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Presentation outline

Alntroduction to motor unit (MU) identification spatiotemporal
properties of MU electrical activity

ASpatial, temporal and MU filters

ABlind source separation approach to MU identificatiofearning of
MU filters and their application to HDEMG signals

ABanks of MU filters and their efficiency different skeletal muscles:
Isometric conditions

ABanks of MU filters and their efficiency in different types of
contractions:isometric, dynamic and elicited contractions
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Surface EMG decomposition timeline & evolution of MU filters
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Electromyography is a
seductive muse
C.J. De Luca (Boston):
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INVITED PAPER Electromyography is a

seductivemusebecause it
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physblogical processes that
cause the muscle to generate

The Use of Surface Electromyography 'orce. produce movement, and
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in Biomechanics

accomplish the countless
functions that allow usto

interact with the world
Carlo J. De Luca around us.

This lecture explores the various uses of surface electromyography in the field of
biomechanics. Three groups of applications are considered: those involving the acti-
vation timing of muscles, the force/EMG signal relationship, and the use of the EMG
signal as a fatigue index. Technical considerations for recording the EMG signal with
maximal fidelity are reviewed, and a compendium of all known factors that affect the
information contained in the EMG signal is presented. Questions are posed 1o guide
the practitioner in the proper use of surface electromyography. Sixteen recommenda-
tions are made regarding the proper detection, analysis, and interpretation of the EMG
signal and measured force. Sixteen outstanding problems that present the greatest chal-
lenges to the advancement of surface electromyography are put forward [or consider-
ation. Finally, a plea is made for arriving at an international agreement on procedures
commonly used in electromyography and biomechanics.

Electromyography is a seductive muse because il provides easy access 10 physi-
ological processes that cause the muscle to generate force, produce movement, and ac-
complish the countless functions that allow us to interact with the world around us. The
current state of surface electromyography is enigmatic. It provides many important and
useful applications, but it has many limitations that must be understood, considered, and
eventually removed so that the discipline is more scientifically based and less reliant on
the art of use. To its detriment, electromyography is too casy to use and consequently too

easy to abuse.

To its detriment,
electromyography

Istoo easy to use and
consequentlytoo easy to
abuse
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Surface EMG mixing models: signal -based approach

P oo b sl

—> I
muscle i A s
excitation R spike R MUAP M recorded
signal trains (S) trains (Y7) EMG channels
A l f1(x1)
v =l >EMG, ,
1L o MN pool 1)~ EMG, ,
5 ,
activation = EMG
primitives SLR LM
oy | i i
<| D)
o (
—— fa (X ] )
41N pool NI v

pool N1 muscle N-1 ——>EMGy 4
SN EMGy;
w muscle N EMGy v

motor motor muscles volume
modules neuron pools conductor

Holobar & Farina, Physiol Measur 2014 #ISEKtutorials



Surface EMG decomposition timeline & evolution of MU filters

Early attempts Convolutive EMG mixing
Xu et al. (Hong Kong) model (CKC, BSS)
Gazzoni et al.(Torino), Holobar & Zazula 2003,
Zazula et al. (Maribor), 2004, 2007

Blok et. al. (Nijmegen) ®

1997 2001 P
1999 2003
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Electromyography is a Instantaneous EMG
seductive muse mixing model (BSS)
C.J. De Luca (Boston): Nakamura et al. 2001,
Garc2a et-2009,. 2004 S
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Surface EMG mixing models

convolutive model
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Highdensity EMG: convolutive model

Innervation pulse trains Convolution kernels
(spike trains) (MUAPS)
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ConvolutiveEMGmodel: matrix form
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A Matrix of convolution kernels (MUAPS):
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Convolution Kernel Compensation (CKC)

HDEMG modelo € € "IBs
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M U fl Iter Mionopotar spike trains
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