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fall risk in older adults, annual statistics in the Netherlands

treatments in 
emergency dept

deaths after a fall

severe injuries 2009-2018

prognosis 2050

hip fractures wrist fracturesTBI

most common injuries

3320 per 100.000 inhabitants > 65 yrs 136 per 100.000 inhabitants > 65 yrs

increase

veiligheid.nl
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walking a risk for falls

Berg et al. Age & Ageing 1997

most falls occur while walking

in community dwelling elderly and

in residents in long-term care
Robinovitch et al. Lancet 2013

many of these falls occur without major 
external perturbations

Robinovitch et al. Lancet 2013
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CoM moves high
above small BoS 

Bauby & Kuo J Biomech 2000

gait stability

modeling suggests that
feedback control is 

needed

CoM moves toward and 
beyond stance foot



CoM state feedback
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position and velocity feedback are needed



Townsend J Biomech 1985
Hof et al. J Biomech 2005
Hof Hum Mov Sci 20008

CoM state

vcom

r
w=√(g/r)

xCoM = CoM + dCoM/dt/w

extrapolated center of mass (xCoM)
predicts where foot should be placed to control CoM velocity



putative feedback model:
FMLi = a⋅xCoMi-d + b

i = phase (% stride)
d = feedback delay (% stride)
a = feedback gain



FMLi = a⋅xCoMi-d + b
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delays 1%-50%
- delay = 38%

mediolateral stabilization, typical example

delay yielding largest negative gain selected



normal walking
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slow walking
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mediolateral stabilization, group results

n = 14
normalized speed = 

1.25 and 0.63  

normal and slow 
treadmill walking

data from van Leeuwen et al. PONE 2020
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stabilized

effects of stabilization demands

decreased correlation and gain indicate role in stabilization

n = 8
speed = 0.8 m/s

normal and stabilized treadmill walking

data from Magnani et al. Sci Rep 2021



50 60 70 80 90 100
phase (% cycle)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

co
rre

la
tio

n 
re

s.
 fo

rc
e 

- r
es

. x
co

m

50 60 70 80 90 100
phase (% cycle)

-1500

-1000

-500

0

500
ga

in
 (N

/m
)

0 20 40 60 80 100
lag (% cycle)

-1

-0.8

-0.6

-0.4

-0.2

0

m
in

. c
or

re
la

tio
n

50 60 70 80 90 100
phase (% cycle)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

co
rre

la
tio

n 
re

s.
 fo

rc
e 

- r
es

. x
co

m

50 60 70 80 90 100
phase (% cycle)

-1500

-1000

-500

0

500

ga
in

 (N
/m

)

0 20 40 60 80 100
lag (% cycle)

-1

-0.8

-0.6

-0.4

-0.2

0

m
in

. c
or

re
la

tio
n

normal EVS

effects of sensory perturbations

decreased correlation with EVS indicates feedback

n = 8
speed = 0.8 m/s

normal and perturbed treadmill walking

data from Magnani et al. Sci Rep 2021



effects of mechanical perturbations

n = 9
speed = 1.25 m/s

normal and perturbed treadmill walking

data from Vlutters et al. Sci Rep 2018

increased correlation and gain in perturbed gait

steady-state waist pulls



conclusions

phase dependent CoM state (xCoM) feedback
affected by stabilization demands
impaired by electrical vestibular stimulation
used in steady-state and enhanced in perturbed gait

NB results for anteroposterior control are very similar

goodness of fit, residual error, and gain characterize stabilizing feedback 
control and may have diagnostic value

mocap of pelvis marker (CoM proxy) on an instrumented treadmill allows 
assessment of stabilizing feedback control



Thanks for your attention
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Maarten Afschrift, Mina Arvin, Sjoerd Bruijn, Jaak Duysens, Marco Hoozemans, Moira van 
Leeuwen, Rina Magnani, Mohammadreza Mahaki, Mirjam Pijnappels, Sabine Verschueren



Mechanisms to stabilize steady-
state gait
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3 mechanisms

Hof (2008) Hum Mov Sci
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Foot placement: linear models

Wang & Srinivasan (2014) Biol Let https://github.com/SjoerdBruijn/FootPlacement



Foot placement: Active control!
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Ranking et al (2014) J Neurophysiol; Van Leeuwen et al (2020) PLoS One 

n=30

V=1.25 × sqrt(L) m/s 




Foot placement: Stabilisation

Mahaki et al (2019) PeerJ
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Foot placement

• Foot placement relative to CoM can be described using linear models


• Foot placement relative to the CoM is actively controlled


• Foot placement is used to control gait stability
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Error term



Van Leeuwen et al (2022 ) J Biomech

Ankle moment control
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Ankle moment control: Stabilisation

Van Leeuwen et al (2022 ) J Biomech
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Ankle moment control: Stabilisation

Van Leeuwen et al (2022 ) J Biomech
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Ankle moment control

• Errors in ML foot placement are corrected by ankle moment control 


• Which is also partly active (results not shown)
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Foot placement (AP)

Jin et al (2022 ) BioRxiv

n=30

V=1.25 × sqrt(L) m/s 




Push off as correction for foot placement (AP)

Jin et al (2022 ) BioRxiv



Push off as correction for foot placement (AP)

Jin et al (2022 ) BioRxiv
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Push off as correction for foot placement (AP)

Jin et al (2022 ) BioRxiv



Conclusions

• Foot placement relative to CoM can be described using linear models


• Foot placement relative to the CoM is actively controlled


• Foot placement is used to control gait stability


• Errors in ML foot placement are corrected by ankle moment control 


• Errors in AP foot placement are correcte by push of

https://github.com/SjoerdBruijn/FootPlacement



Bonus slide

• Part of what I described is most likely passive (Patil et al); However,  a part is 
CERTAINLY active control; evidence:


• Muscle activity correlated to foot placement (Rankin et al, van Leeuwen et 
al)


• Walking on Lesschuh (van Leeuwen et al)


• Sensory perturbations, such as GVS (Reimann et al, Magnani et al), 
Vibration (Arvin et al., Roden-Reynolds et al.)


• (After) effects of walking in a (perturbing) force field (Rankin et al)



Feedback control after 

gait perturbations
Maarten Afschrift, VU Amsterdam



Perturbations to gain insight in reactive balance control
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Perturb walking to gain insight in reactive balance 
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Feedback of whole body-center of mass kinematics can explain change 

in muscle activity after perturabation

S. Safavynia and L. Ting (J. Neurophysiol. 2013)



Feedback of whole body-center of mass kinematics can explain change 

in muscle activity after perturabation

S. Safavynia and L. Ting (J. Neurophysiol. 2013)

Tibialis anterior

Activity (EMG)

Medial 

gastrocnemius

(EMG)Long-latency muscle activity reflects continuous, 

delayed sensorimotor feedback of task-level (and not 

joint-level error)



Task level (COM feedback) in perturbed walking ?

Afschrift et al, Gait and Posture. 68 (2019) M. Vlutters, et al. Scientific Reports. 8, 14621–

14621 (2018).

J. K. Moore et al., PeerJ. 3, e918–e918 (2015).



Ankle strategy in perturbed walking

Steady-state walking

Belt acceleration

Belt deceleration



Ankle strategy driven by COM feedback ?

100 ms 100 ms



Ankle strategy driven by COM feedback ?



COM feedback explains changes in ankle moment in 

perturbed walking

Tibialis anteriorsoleus

% gait cycle
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COM feedback explains changes in ankle moment in 

perturbed walking

Delayed COM feedback explains changes in ankle

moment in response to pelvis push and pulll perturbations



Modulation of COM feedback during the gait cycle



Modulation of COM feedback gains during the gait cycle



Modulation of COM feedback gains during the stance phase



Modulation of COM feedback gains during the stance phase



Modulation of COM feedback gains during the stance phase



Modulation of COM feedback with gait speed



COM feedback explains changes in ankle moment across perturbation

protocols



In summary

• Delayed COM feedback can explain changes in ankle moment after various 

perturbations in standing and walking

• Feedback gains are modulated during gait cycle and with gait speed

• Future directions 

• Feedback control in individuals at risk of falling ?

• COM feedback for biomimetic control of wearable robotic devices (e.g. ankle 

exoskeleton) ?
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